Moyennes mobiles: Quels sont-ils Parmi les indicateurs techniques les plus populaires, les moyennes mobiles sont utilisées pour évaluer la direction de la tendance actuelle. Chaque type de moyenne mobile (généralement écrit dans ce tutoriel comme MA) est un résultat mathématique qui est calculé en faisant la moyenne d'un certain nombre de points de données passés. Une fois déterminée, la moyenne résultante est ensuite tracée sur un graphique afin de permettre aux commerçants d'examiner les données lissées plutôt que de se concentrer sur les fluctuations de prix au jour le jour qui sont inhérentes à tous les marchés financiers. La forme la plus simple d'une moyenne mobile, connue sous le nom de moyenne mobile simple (SMA), est calculée en prenant la moyenne arithmétique d'un ensemble donné de valeurs. Par exemple, pour calculer une moyenne mobile de base de 10 jours, vous additionnez les prix de clôture des 10 derniers jours, puis divisez le résultat par 10. Dans la figure 1, la somme des prix pour les 10 derniers jours (110) est Divisé par le nombre de jours (10) pour arriver à la moyenne sur 10 jours. Si un commerçant souhaite voir une moyenne de 50 jours à la place, le même type de calcul serait fait, mais il inclurait les prix au cours des 50 derniers jours. La moyenne résultante ci-dessous (11) prend en compte les 10 derniers points de données afin de donner aux commerçants une idée de la façon dont un actif est évalué par rapport aux 10 derniers jours. Peut-être vous vous demandez pourquoi les traders techniques appellent cet outil une moyenne mobile et pas seulement un moyen régulier. La réponse est que lorsque de nouvelles valeurs deviennent disponibles, les points de données les plus anciens doivent être supprimés de l'ensemble et de nouveaux points de données doivent venir les remplacer. Ainsi, l'ensemble de données se déplace constamment pour tenir compte des nouvelles données à mesure qu'elles deviennent disponibles. Cette méthode de calcul garantit que seules les informations actuelles sont comptabilisées. Dans la figure 2, une fois que la nouvelle valeur de 5 est ajoutée à l'ensemble, la case rouge (représentant les 10 derniers points de données) se déplace vers la droite et la dernière valeur de 15 est supprimée du calcul. Étant donné que la valeur relativement petite de 5 remplace la valeur élevée de 15, on s'attend à ce que la moyenne de l'ensemble de données diminue, ce qui fait, dans ce cas, de 11 à 10. Qu'est-ce que les moyennes mobiles ressemblent Une fois que les valeurs de la MA ont été calculés, ils sont tracés sur un graphique et ensuite connectés pour créer une ligne de moyenne mobile. Ces lignes courbes sont communes sur les tableaux des commerçants techniques, mais la façon dont ils sont utilisés peut varier de façon drastique (plus sur cela plus tard). Comme vous pouvez le voir sur la figure 3, il est possible d'ajouter plus d'une moyenne mobile à n'importe quel graphique en ajustant le nombre de périodes de temps utilisées dans le calcul. Ces lignes courbes peuvent sembler distrayant ou confus au début, mais vous vous habituerez à eux comme le temps passe. La ligne rouge est simplement le prix moyen au cours des 50 derniers jours, alors que la ligne bleue est le prix moyen au cours des 100 derniers jours. Maintenant que vous comprenez ce qu'est une moyenne mobile et à quoi il ressemble, bien introduire un autre type de moyenne mobile et d'examiner comment il diffère de la moyenne mobile simple mentionné précédemment. La moyenne mobile simple est extrêmement populaire parmi les commerçants, mais comme tous les indicateurs techniques, il a ses critiques. Beaucoup d'individus soutiennent que l'utilité du SMA est limitée parce que chaque point dans la série de données est pondéré le même, peu importe où il se produit dans la séquence. Les critiques soutiennent que les données les plus récentes sont plus importantes que les données plus anciennes et devraient avoir une plus grande influence sur le résultat final. En réponse à cette critique, les commerçants ont commencé à donner plus de poids aux données récentes, ce qui a conduit depuis à l'invention de différents types de nouvelles moyennes, dont la plus populaire est la moyenne mobile exponentielle (EMA). Moyenne mobile exponentielle La moyenne mobile exponentielle est un type de moyenne mobile qui donne plus de poids aux prix récents dans une tentative de le rendre plus réactif (par exemple, À de nouvelles informations. Apprendre l'équation un peu compliquée pour calculer un EMA peut être inutile pour de nombreux commerçants, puisque presque tous les forfaits de cartographie faire les calculs pour vous. Toutefois, pour vous mathématiciens geeks là-bas, voici l'équation EMA: Lorsque vous utilisez la formule pour calculer le premier point de l'EMA, vous pouvez remarquer qu'il n'y a aucune valeur disponible pour utiliser comme l'EMA précédente. Ce petit problème peut être résolu en commençant le calcul avec une moyenne mobile simple et en poursuivant avec la formule ci-dessus à partir de là. Nous vous avons fourni un exemple de feuille de calcul qui comprend des exemples réels de calcul d'une moyenne mobile simple et d'une moyenne mobile exponentielle. La différence entre l'EMA et SMA Maintenant que vous avez une meilleure compréhension de la façon dont la SMA et l'EMA sont calculés, permet de jeter un oeil à la façon dont ces moyennes diffèrent. En regardant le calcul de l'EMA, vous remarquerez que plus l'accent est mis sur les points de données récentes, ce qui en fait un type de moyenne pondérée. À la figure 5, le nombre de périodes utilisées dans chaque moyenne est identique (15), mais l'EMA répond plus rapidement à l'évolution des prix. Remarquez comment l'EMA a une valeur plus élevée lorsque le prix est en hausse, et tombe plus vite que la SMA lorsque le prix est en baisse. Cette réactivité est la principale raison pour laquelle de nombreux commerçants préfèrent utiliser l'EMA sur le SMA. Que signifient les différents jours Moyennes mobiles sont un indicateur totalement personnalisable, ce qui signifie que l'utilisateur peut librement choisir le temps qu'ils veulent lors de la création de la moyenne. Les périodes les plus courantes utilisées pour les moyennes mobiles sont 15, 20, 30, 50, 100 et 200 jours. Plus le délai de création de la moyenne est court, plus il sera sensible aux variations de prix. Plus la durée est longue, moins sensible, ou plus lissée, la moyenne sera. Il n'y a pas de période correcte à utiliser lors de la configuration de vos moyennes mobiles. La meilleure façon de déterminer qui fonctionne le mieux pour vous est d'expérimenter avec un certain nombre de périodes de temps différentes jusqu'à ce que vous en trouver un qui correspond à votre stratégie. Moyennes mobiles: Comment utiliser ThemHow pour calculer des moyennes mobiles en Excel Excel Data Analysis For Dummies, 2nd Edition La commande Data Analysis fournit un outil pour calculer des moyennes mobiles et exponentiellement lissées dans Excel. Supposons, à titre d'illustration, que vous ayez recueilli des informations quotidiennes sur la température. Vous voulez calculer la moyenne mobile de trois jours 8212 la moyenne des trois derniers jours 8212 dans le cadre d'une prévision météorologique simple. Pour calculer les moyennes mobiles de cet ensemble de données, procédez comme suit. Pour calculer une moyenne mobile, cliquez d'abord sur le bouton de commande Data Analysis de l'onglet Données. Lorsque Excel affiche la boîte de dialogue Analyse des données, sélectionnez l'élément Moyenne mobile dans la liste, puis cliquez sur OK. Excel affiche la boîte de dialogue Moyenne mobile. Identifiez les données que vous souhaitez utiliser pour calculer la moyenne mobile. Cliquez dans la zone de texte Plage d'entrée de la boîte de dialogue Moyenne mobile. Identifiez ensuite la plage d'entrée, en tapant une adresse de plage de feuille de calcul ou en utilisant la souris pour sélectionner la plage de la feuille de calcul. Votre référence de plage doit utiliser des adresses de cellules absolues. Une adresse de cellule absolue précède la lettre de colonne et le numéro de ligne avec des signes, comme dans A1: A10. Si la première cellule de votre plage d'entrée contient une étiquette de texte pour identifier ou décrire vos données, cochez la case Etiquettes en première ligne. Dans la zone de texte Intervalle, dites à Excel le nombre de valeurs à inclure dans le calcul de la moyenne mobile. Vous pouvez calculer une moyenne mobile en utilisant un nombre quelconque de valeurs. Par défaut, Excel utilise les trois valeurs les plus récentes pour calculer la moyenne mobile. Pour spécifier qu'un autre nombre de valeurs doit être utilisé pour calculer la moyenne mobile, entrez cette valeur dans la zone de texte Intervalle. Dites à Excel où placer les données de la moyenne mobile. Utilisez la zone de texte Plage de sortie pour identifier la plage de feuilles de calcul dans laquelle vous souhaitez placer les données de la moyenne mobile. Dans l'exemple de la feuille de calcul, les données de la moyenne mobile ont été placées dans la plage de feuilles de calcul B2: B10. (Facultatif) Spécifiez si vous voulez un graphique. Si vous voulez un graphique qui trace les informations relatives à la moyenne mobile, cochez la case Sortie du graphique. (Facultatif) Indiquez si vous souhaitez calculer les informations d'erreur standard. Si vous souhaitez calculer des erreurs standard pour les données, cochez la case Standard Errors. Excel place les valeurs d'erreur standard à côté des valeurs de la moyenne mobile. (L'information d'erreur standard entre dans C2: C10.) Une fois que vous avez terminé de spécifier les informations sur la moyenne mobile que vous souhaitez calculer et où vous voulez placer, cliquez sur OK. Excel calcule l'information sur la moyenne mobile. Remarque: Si Excel doesn8217t dispose d'informations suffisantes pour calculer une moyenne mobile pour une erreur standard, il place le message d'erreur dans la cellule. Vous pouvez voir plusieurs cellules qui montrent ce message d'erreur comme une valeur. Movir moyen et modèles exponentiels de lissage Comme une première étape pour aller au-delà des modèles moyens, modèles randonnée aléatoire, et les modèles de tendance linéaire, les tendances non saisonnières et les tendances peuvent être extrapolées en utilisant un mobile - Moyenne ou lissage. L'hypothèse de base derrière les modèles de moyenne et de lissage est que la série temporelle est localement stationnaire avec une moyenne lentement variable. Par conséquent, nous prenons une moyenne mobile (locale) pour estimer la valeur actuelle de la moyenne, puis nous l'utilisons comme prévision pour le proche avenir. Cela peut être considéré comme un compromis entre le modèle moyen et le modèle randonnée aléatoire sans dérive. La même stratégie peut être utilisée pour estimer et extrapoler une tendance locale. Une moyenne mobile est souvent appelée une version quotsmoothedquot de la série originale parce que la moyenne à court terme a pour effet de lisser les bosses dans la série d'origine. En ajustant le degré de lissage (la largeur de la moyenne mobile), on peut espérer trouver un équilibre optimal entre la performance des modèles de marche moyenne et aléatoire. Le modèle le plus simple de la moyenne est le. Moyenne mobile simple (également pondérée): La prévision de la valeur de Y à l'instant t1 qui est faite à l'instant t est égale à la moyenne simple des observations m les plus récentes: (Ici et ailleurs, je vais utiliser le symbole 8220Y-hat8221 pour me tenir Pour une prévision de la série temporelle Y faite le plus tôt possible par un modèle donné). Cette moyenne est centrée à la période t (m1) 2, ce qui implique que l'estimation de la moyenne locale aura tendance à se situer en deçà du vrai Valeur de la moyenne locale d'environ (m1) 2 périodes. Ainsi, nous disons que l'âge moyen des données dans la moyenne mobile simple est (m1) 2 par rapport à la période pour laquelle la prévision est calculée: c'est le temps pendant lequel les prévisions auront tendance à être en retard par rapport aux points de retournement dans les données . Par exemple, si vous faites la moyenne des 5 dernières valeurs, les prévisions seront environ 3 périodes en retard pour répondre aux points de retournement. Notez que si m1, le modèle de moyenne mobile simple (SMA) est équivalent au modèle de marche aléatoire (sans croissance). Si m est très grand (comparable à la longueur de la période d'estimation), le modèle SMA est équivalent au modèle moyen. Comme pour tout paramètre d'un modèle de prévision, il est courant d'ajuster la valeur de k afin d'obtenir le meilleur rapport entre les données, c'est-à-dire les erreurs de prévision les plus faibles en moyenne. Voici un exemple d'une série qui semble présenter des fluctuations aléatoires autour d'une moyenne lentement variable. Tout d'abord, essayons de l'adapter à un modèle de marche aléatoire, ce qui équivaut à une moyenne mobile simple de 1 terme: Le modèle de marche aléatoire répond très rapidement aux changements dans la série, mais en le faisant, il choisit une grande partie du quotnoise dans le Données (les fluctuations aléatoires) ainsi que le quotsignalquot (la moyenne locale). Si nous essayons plutôt une moyenne mobile simple de 5 termes, nous obtenons un ensemble plus lisse de prévisions: La moyenne mobile simple à 5 termes génère des erreurs beaucoup plus faibles que le modèle de marche aléatoire dans ce cas. L'âge moyen des données de cette prévision est de 3 ((51) 2), de sorte qu'il tend à être en retard par rapport aux points de retournement d'environ trois périodes. (Par exemple, un ralentissement semble avoir eu lieu à la période 21, mais les prévisions ne tournent pas jusqu'à plusieurs périodes plus tard.) Notez que les prévisions à long terme du modèle SMA sont une ligne droite horizontale, tout comme dans la marche aléatoire maquette. Ainsi, le modèle SMA suppose qu'il n'y a pas de tendance dans les données. Cependant, alors que les prévisions du modèle randonnée aléatoire sont tout simplement égales à la dernière valeur observée, les prévisions du modèle SMA sont égales à une moyenne pondérée des valeurs récentes. Les limites de confiance calculées par Statgraphics pour les prévisions à long terme de la moyenne mobile simple ne s'élargissent pas à mesure que l'horizon de prévision augmente. Ce n'est évidemment pas correct Malheureusement, il n'existe pas de théorie statistique sous-jacente qui nous indique comment les intervalles de confiance devraient élargir pour ce modèle. Cependant, il n'est pas trop difficile de calculer des estimations empiriques des limites de confiance pour les prévisions à plus long terme. Par exemple, vous pouvez créer une feuille de calcul dans laquelle le modèle SMA sera utilisé pour prévoir 2 étapes à venir, 3 étapes à venir, etc. dans l'exemple de données historiques. Vous pouvez ensuite calculer les écarts types des erreurs à chaque horizon de prévision, puis construire des intervalles de confiance pour les prévisions à long terme en ajoutant et en soustrayant des multiples de l'écart-type approprié. Si nous essayons une moyenne mobile simple de 9 termes, nous obtenons des prévisions encore plus lisses et plus d'un effet de retard: L'âge moyen est maintenant 5 périodes ((91) 2). Si l'on prend une moyenne mobile à 19 mois, l'âge moyen passe à 10: On remarque que les prévisions sont maintenant en retard par rapport aux points de retournement d'environ 10 périodes. Quelle quantité de lissage est la meilleure pour cette série Voici un tableau qui compare leurs statistiques d'erreur, incluant également une moyenne à 3 termes: Le modèle C, la moyenne mobile à 5 termes, donne la plus faible valeur de RMSE d'une petite marge sur les 3 À moyen terme et à moyen terme, et leurs autres statistiques sont presque identiques. Ainsi, parmi les modèles avec des statistiques d'erreur très similaires, nous pouvons choisir si nous préférerions un peu plus de réactivité ou un peu plus de souplesse dans les prévisions. Le modèle de la moyenne mobile simple décrit ci-dessus a la propriété indésirable de traiter les dernières k observations de manière égale et d'ignorer complètement toutes les observations précédentes. (Retourner au haut de la page.) Lissage Exponentiel Simple (moyenne exponentielle pondérée) Intuitivement, les données passées devraient être actualisées de façon plus graduelle - par exemple, l'observation la plus récente devrait prendre un peu plus de poids que la deuxième plus récente, et la deuxième plus récente devrait avoir un peu plus de poids que la 3ème plus récente, et bientôt. Le simple lissage exponentiel (SES) modèle accomplit cela. Soit 945 une constante de quotslacement constante (un nombre entre 0 et 1). Une façon d'écrire le modèle consiste à définir une série L qui représente le niveau actuel (c'est-à-dire la valeur moyenne locale) de la série estimée à partir des données jusqu'à présent. La valeur de L à l'instant t est calculée récursivement à partir de sa propre valeur précédente comme ceci: La valeur lissée actuelle est donc une interpolation entre la valeur lissée précédente et l'observation courante, où 945 contrôle la proximité de la valeur interpolée à la valeur la plus récente observation. La prévision pour la période suivante est simplement la valeur lissée actuelle: De manière équivalente, nous pouvons exprimer directement la prochaine prévision en fonction des prévisions précédentes et des observations précédentes, dans l'une des versions équivalentes suivantes. Dans la première version, la prévision est une interpolation entre la prévision précédente et l'observation précédente: Dans la deuxième version, la prévision suivante est obtenue en ajustant la prévision précédente dans la direction de l'erreur précédente par une fraction 945. est l'erreur faite à Temps t. Dans la troisième version, la prévision est une moyenne mobile exponentiellement pondérée (c'est-à-dire actualisée) avec le facteur d'actualisation 1-945: La version d'interpolation de la formule de prévision est la plus simple à utiliser si vous mettez en œuvre le modèle sur une feuille de calcul: Cellule unique et contient des références de cellule pointant vers la prévision précédente, l'observation précédente et la cellule où la valeur de 945 est stockée. Notez que si 945 1, le modèle SES est équivalent à un modèle de marche aléatoire (sans croissance). Si 945 0, le modèle SES est équivalent au modèle moyen, en supposant que la première valeur lissée est égale à la moyenne. (Retourner au haut de la page.) L'âge moyen des données dans la prévision de lissage exponentielle simple est de 1 945 par rapport à la période pour laquelle la prévision est calculée. (Ce n'est pas censé être évident, mais on peut facilement le montrer en évaluant une série infinie.) Par conséquent, la prévision moyenne mobile simple tend à être en retard par rapport aux points de retournement d'environ 1 945 périodes. Par exemple, lorsque 945 0,5 le lag est 2 périodes lorsque 945 0,2 le retard est de 5 périodes lorsque 945 0,1 le lag est de 10 périodes, et ainsi de suite. Pour un âge moyen donné (c'est-à-dire le décalage), le lissage exponentiel simple (SES) est un peu supérieur à la moyenne mobile simple (SMA), car il place relativement plus de poids sur l'observation la plus récente. Il est un peu plus sensible aux changements survenus dans le passé récent. Par exemple, un modèle SMA avec 9 termes et un modèle SES avec 945 0,2 ont tous deux une moyenne d'âge de 5 pour les données dans leurs prévisions, mais le modèle SES met plus de poids sur les 3 dernières valeurs que le modèle SMA et à la Un autre avantage important du modèle SES par rapport au modèle SMA est que le modèle SES utilise un paramètre de lissage qui est variable en continu, de sorte qu'il peut facilement être optimisé En utilisant un algorithme quotsolverquot pour minimiser l'erreur quadratique moyenne. La valeur optimale de 945 dans le modèle SES de cette série s'élève à 0,2961, comme indiqué ici: L'âge moyen des données de cette prévision est de 10,2961 3,4 périodes, ce qui est similaire à celle d'une moyenne mobile simple à 6 termes. Les prévisions à long terme du modèle SES sont une droite horizontale. Comme dans le modèle SMA et le modèle randonnée aléatoire sans croissance. Cependant, notez que les intervalles de confiance calculés par Statgraphics divergent maintenant d'une manière raisonnable et qu'ils sont sensiblement plus étroits que les intervalles de confiance pour le modèle de marche aléatoire. Le modèle SES suppose que la série est quelque peu plus prévisible que le modèle de marche aléatoire. Un modèle SES est en fait un cas particulier d'un modèle ARIMA. La théorie statistique des modèles ARIMA fournit une base solide pour le calcul des intervalles de confiance pour le modèle SES. En particulier, un modèle SES est un modèle ARIMA avec une différence non saisonnière, un terme MA (1) et aucun terme constant. Autrement connu sous le nom de modèle de MARIMA (0,1,1) sans constantquot. Le coefficient MA (1) du modèle ARIMA correspond à la quantité 1 945 dans le modèle SES. Par exemple, si vous ajoutez un modèle ARIMA (0,1,1) sans constante à la série analysée ici, le coefficient MA (1) estimé s'avère être 0.7029, ce qui est presque exactement un moins 0.2961. Il est possible d'ajouter l'hypothèse d'une tendance linéaire constante non nulle à un modèle SES. Pour cela, il suffit de spécifier un modèle ARIMA avec une différence non saisonnière et un terme MA (1) avec une constante, c'est-à-dire un modèle ARIMA (0,1,1) avec constante. Les prévisions à long terme auront alors une tendance égale à la tendance moyenne observée sur l'ensemble de la période d'estimation. Vous ne pouvez pas le faire en conjonction avec l'ajustement saisonnier, car les options de réglage saisonnier sont désactivées lorsque le type de modèle est réglé sur ARIMA. Cependant, vous pouvez ajouter une tendance exponentielle à long terme constante à un modèle de lissage exponentiel simple (avec ou sans ajustement saisonnier) en utilisant l'option d'ajustement de l'inflation dans la procédure de prévision. Le taux d'inflation appropriée (taux de croissance en pourcentage) par période peut être estimé comme le coefficient de pente dans un modèle de tendance linéaire adapté aux données en conjonction avec une transformation logarithmique naturelle, ou il peut être basé sur d'autres informations indépendantes concernant les perspectives de croissance à long terme . (Retour au haut de la page) Browns Linear (c'est-à-dire double) Lissage exponentiel Les modèles SMA et SES supposent qu'il n'y a aucune tendance des données (ce qui est normalement correct ou au moins pas trop mauvais pour 1- Des prévisions d'avance lorsque les données sont relativement bruyantes), et elles peuvent être modifiées pour incorporer une tendance linéaire constante comme indiqué ci-dessus. Qu'en est-il des tendances à court terme Si une série affiche un taux de croissance variable ou un schéma cyclique qui se distingue clairement du bruit, et s'il est nécessaire de prévoir plus d'une période à venir, l'estimation d'une tendance locale pourrait également être un problème. Le modèle de lissage exponentiel simple peut être généralisé pour obtenir un modèle linéaire de lissage exponentiel (LES) qui calcule des estimations locales de niveau et de tendance. Le modèle de tendance le plus simple variant dans le temps est le modèle de lissage exponentiel linéaire de Browns, qui utilise deux séries lissées différentes qui sont centrées à différents moments. La formule de prévision est basée sur une extrapolation d'une droite passant par les deux centres. (Une version plus sophistiquée de ce modèle, Holt8217s, est discutée ci-dessous.) La forme algébrique du modèle de lissage exponentiel linéaire de Brown8217s, comme celle du modèle de lissage exponentiel simple, peut être exprimée sous différentes formes différentes mais équivalentes. La forme quotométrique de ce modèle est habituellement exprimée comme suit: Soit S la série lissée par singulier obtenue en appliquant un lissage exponentiel simple à la série Y. C'est-à-dire que la valeur de S à la période t est donnée par: (Rappelons que, sous simple Le lissage exponentiel, ce serait la prévision de Y à la période t1.) Puis, désignons par Squot la série doublement lissée obtenue en appliquant le lissage exponentiel simple (en utilisant le même 945) à la série S: Enfin, la prévision pour Y tk. Pour tout kgt1, est donnée par: Ceci donne e 1 0 (c'est-à-dire tricher un peu, et laisser la première prévision égaler la première observation réelle), et e 2 Y 2 8211 Y 1. Après quoi les prévisions sont générées en utilisant l'équation ci-dessus. Cela donne les mêmes valeurs ajustées que la formule basée sur S et S si ces derniers ont été démarrés en utilisant S 1 S 1 Y 1. Cette version du modèle est utilisée sur la page suivante qui illustre une combinaison de lissage exponentiel avec ajustement saisonnier. Holt8217s Linear Exponential Smoothing Brown8217s Le modèle LES calcule les estimations locales de niveau et de tendance en lissant les données récentes, mais le fait qu'il le fait avec un seul paramètre de lissage impose une contrainte sur les modèles de données qu'il peut adapter: le niveau et la tendance Ne sont pas autorisés à varier à des taux indépendants. Le modèle LES de Holt8217s aborde cette question en incluant deux constantes de lissage, une pour le niveau et une pour la tendance. A tout moment t, comme dans le modèle Brown8217s, il existe une estimation L t du niveau local et une estimation T t de la tendance locale. Ici, elles sont calculées récursivement à partir de la valeur de Y observée au temps t et des estimations précédentes du niveau et de la tendance par deux équations qui leur appliquent un lissage exponentiel séparément. Si le niveau et la tendance estimés au temps t-1 sont L t82091 et T t-1. Respectivement, alors la prévision pour Y tshy qui aurait été faite au temps t-1 est égale à L t-1 T t-1. Lorsque la valeur réelle est observée, l'estimation actualisée du niveau est calculée récursivement en interpolant entre Y tshy et sa prévision, L t-1 T t-1, en utilisant des poids de 945 et 1 945. La variation du niveau estimé, À savoir L t 8209 L t82091. Peut être interprété comme une mesure bruyante de la tendance à l'instant t. L'estimation actualisée de la tendance est ensuite calculée récursivement en interpolant entre L t 8209 L t82091 et l'estimation précédente de la tendance, T t-1. Utilisant des poids de 946 et 1-946: L'interprétation de la constante de lissage de tendance 946 est analogue à celle de la constante de lissage de niveau 945. Les modèles avec de petites valeurs de 946 supposent que la tendance ne change que très lentement avec le temps tandis que les modèles avec 946 supposent qu'il change plus rapidement. Un modèle avec un grand 946 croit que l'avenir lointain est très incertain, parce que les erreurs dans l'estimation de la tendance deviennent très importantes lors de la prévision de plus d'une période à venir. Les constantes de lissage 945 et 946 peuvent être estimées de la manière habituelle en minimisant l'erreur quadratique moyenne des prévisions à 1 pas. Lorsque cela est fait dans Statgraphics, les estimations s'avèrent être 945 0,3048 et 946 0,008. La très petite valeur de 946 signifie que le modèle suppose très peu de changement dans la tendance d'une période à l'autre, donc, fondamentalement, ce modèle essaie d'estimer une tendance à long terme. Par analogie avec la notion d'âge moyen des données utilisées pour estimer le niveau local de la série, l'âge moyen des données utilisées pour estimer la tendance locale est proportionnel à 1 946, mais pas exactement égal à celui-ci . Dans ce cas, cela s'avère être 10.006 125. Ceci n'est pas un nombre très précis dans la mesure où la précision de l'estimation de 946 est vraiment de 3 décimales, mais elle est du même ordre de grandeur que la taille de l'échantillon de 100, donc Ce modèle est la moyenne sur beaucoup d'histoire dans l'estimation de la tendance. Le graphique ci-dessous montre que le modèle ERP estime une tendance locale légèrement plus grande à la fin de la série que la tendance constante estimée dans le modèle SEStrend. En outre, la valeur estimée de 945 est presque identique à celle obtenue en ajustant le modèle SES avec ou sans tendance, donc c'est presque le même modèle. Maintenant, est-ce que ces ressembler à des prévisions raisonnables pour un modèle qui est censé être l'estimation d'une tendance locale Si vous 8220eyeball8221 cette intrigue, il semble que la tendance locale a tourné vers le bas à la fin de la série Qu'est-ce qui s'est passé Les paramètres de ce modèle Ont été estimées en minimisant l'erreur au carré des prévisions à un pas, et non des prévisions à plus long terme, auquel cas la tendance ne fait pas beaucoup de différence. Si tout ce que vous regardez sont des erreurs en une étape, vous ne voyez pas l'image plus grande des tendances sur (disons) 10 ou 20 périodes. Afin d'obtenir ce modèle plus en phase avec notre extrapolation ophtalmique des données, nous pouvons ajuster manuellement la constante de lissage de tendance afin qu'il utilise une ligne de base plus courte pour l'estimation de tendance. Par exemple, si l'on choisit de fixer 946 0,1, l'âge moyen des données utilisées pour estimer la tendance locale est de 10 périodes, ce qui signifie que nous faisons la moyenne de la tendance au cours des 20 dernières périodes. Here8217s ce que l'intrigue de prévision ressemble si nous fixons 946 0.1 tout en gardant 945 0.3. Cela semble intuitivement raisonnable pour cette série, bien qu'il soit probablement dangereux d'extrapoler cette tendance plus de 10 périodes dans l'avenir. Qu'en est-il des statistiques d'erreur Voici une comparaison de modèles pour les deux modèles présentés ci-dessus ainsi que trois modèles SES. La valeur optimale de 945 pour le modèle SES est d'environ 0,3, mais des résultats similaires (avec un peu plus ou moins de réactivité, respectivement) sont obtenus avec 0,5 et 0,2. (A) Holts linéaires exp. Lissage avec alpha 0,3048 et bêta 0,008 (B) Holts linéaire exp. Lissage avec alpha 0.3 et bêta 0.1 (C) Lissage exponentiel simple avec alpha 0.5 (D) Lissage exponentiel simple avec alpha 0.3 (E) Lissage exponentiel simple avec alpha 0.2 Leurs stats sont quasiment identiques, donc nous ne pouvons pas vraiment faire le choix sur la base Des erreurs de prévision à 1 pas dans l'échantillon de données. Nous devons nous rabattre sur d'autres considérations. Si nous croyons fermement qu'il est logique de baser l'estimation de la tendance actuelle sur ce qui s'est produit au cours des 20 dernières périodes, nous pouvons faire valoir le modèle ERP avec 945 0,3 et 946 0,1. Si nous voulons être agnostiques quant à savoir s'il existe une tendance locale, alors l'un des modèles SSE pourrait être plus facile à expliquer et donnerait également plus de prévisions moyennes de route pour les 5 ou 10 prochaines périodes. (Retourner au haut de la page.) Quel type d'extrapolation de tendance est le mieux: horizontal ou linéaire Les données empiriques suggèrent que, si les données ont déjà été ajustées (si nécessaire) pour l'inflation, il peut être imprudent d'extrapoler des courbes linéaires à court terme Tendances très loin dans l'avenir. Les tendances évidentes aujourd'hui peuvent ralentir à l'avenir en raison de causes variées telles que l'obsolescence des produits, la concurrence accrue, les ralentissements cycliques ou les retournements dans une industrie. Pour cette raison, le lissage exponentiel simple obtient souvent une meilleure sortie de l'échantillon que ce qui pourrait être attendu autrement, malgré son extrapolation de tendance horizontale quotnaivequot. Les modifications de tendance amorties du modèle de lissage exponentiel linéaire sont aussi souvent utilisées dans la pratique pour introduire une note de conservatisme dans ses projections de tendance. Le modèle ERP à tendance amortie peut être mis en œuvre comme un cas particulier d'un modèle ARIMA, en particulier un modèle ARIMA (1,1,2). Il est possible de calculer des intervalles de confiance autour des prévisions à long terme produites par les modèles de lissage exponentiel, en les considérant comme des cas spéciaux de modèles ARIMA. La largeur des intervalles de confiance dépend de (i) l'erreur RMS du modèle, (ii) le type de lissage (simple ou linéaire) (iii) la valeur (S) de la constante de lissage et (iv) le nombre de périodes à venir que vous prévoyez. En général, les intervalles s'étalent plus rapidement lorsque 945 devient plus grand dans le modèle SES et ils s'étalent beaucoup plus rapidement lorsque linéaire plutôt que de simple lissage est utilisé. Ce sujet est abordé plus en détail dans la section des modèles ARIMA des notes. (Retournez en haut de la page.)
No comments:
Post a Comment